
Ground Tools for Autonomy in the 21st Century

Kanna Rajan1, Mark Shirley2, William Taylor3, Bob Kanefsky1

 NASA Ames Research Center
MS 269-2

Moffett Field, CA 94035-1000
650-604-0573

{kanna,shirley,taylor,kanef}@ptolemy.arc.nasa.gov

1 Caelum Research Corp., NASA Ames Research Center
2 NASA Ames, Code IC
3 Recom Technologies, NASA Ames Research Center

Abstract—Ground tools for unmanned spacecraft are chang-
ing rapidly driven by twin innovations: advanced autonomy
and ubiquitous networking. Critical issues are the delega-
tion of low-level decision-making to software, the transpar-
ency and accountability of that software, mixed-initiative
control, i.e., the ability of controllers to adjust portions of
the software’s activity without disturbing other portions, and
the makeup and geographic distribution of the flight control
team. These innovations will enable ground controllers to
manage space-based resources much more efficiently and,
in the case of science missions, give principal investigators
an unprecedented level of direct control.

This paper explores these ideas by describing the ground
tools for the Remote Agent experiment aboard the Deep
Space 1 spacecraft in May of 1999. The experiment demon-
strated autonomous control capabilities including goal-
oriented commanding, on-board planning, robust plan exe-
cution and model-based fault protection. We then speculate
on the effect of these technologies on the future of space-
craft ground control.

1. INTRODUCTION
Current methods of controlling robotic spacecraft rely on a
relatively large and highly skilled mission operations team
that generates detailed time-ordered sequences of com-
mands to step the spacecraft through each desired activity.
Each sequence is carefully constructed on the ground to
ensure that all known operational constraints are satisfied.
The autonomy of the spacecraft is limited.

An alternative approach to spacecraft operations was dem-
onstrated in May 1999 by the Remote Agent Experiment
(RAX) on the Deep Space One (DS1) spacecraft. In this
approach, Artificial Intelligence technology is used to en-
code the operational rules and constraints in the flight soft-
ware. The software may be considered to be an autonomous

“remote agent” of the spacecraft operators in the sense that
the operators rely on the agent to achieve particular goals.

For instance, operators often cannot know the exact condi-
tions on the spacecraft so, under this new approach, they do
not tell the agent exactly what to do at each instant of time.
Instead, they tell the agent what high-level goals to achieve
and what deadlines or other timing constraints there are on
their achievement. The flight software then constructs and
executes a detailed command sequence that reflects condi-
tions onboard the spacecraft and obeys all constraints and
flight rules. This is called “goal-oriented commanding.”

The DS1 Remote Agent Experiment achieved multiple
technology objectives. In addition to goal-oriented com-
manding, RAX demonstrated robust closed-loop plan execu-
tion. This enabled the remote agent to handle minor
variations in the timing of spacecraft operations plus a broad
class of minor problems without causing the planned com-
mand sequence to fail, e.g., if a switch did not turn on a de-
vice, try it a second time. In conventional commanding
modes, had the device not turned on, the entire sequence
would have failed, potentially safing the spacecraft. The
experiment also demonstrated extensive fault protection
capabilities, including failure diagnosis, failure recovery
using both repair and reconfiguration, on-board replanning
following otherwise unrecoverable failures, and system-
level fault protection.

2. BACKGROUND
This section briefly describes the Remote Agent software
architecture and the flight experiment. More detail can be
found in [3]. Section 3 describes the ground tools created
for RAX. Section 4 contains our analysis and predictions
about the future of ground control.

Software Architecture

The Remote Agent is formed by the integration of three
separate Artificial Intelligence technologies: an on-board
planner-scheduler (PS), a robust multi-threaded execu-
tive(EXEC), and a model-based mode identification and
reconfiguration module (MIR).

The RA architecture and its relation to flight software are
shown in Figure 1. Viewed as a black-box, RA issues
commands to real-time execution flight software (FSW) to
modify spacecraft state, and receives state information
through a set of monitors that filter data streams into a set of
abstract properties. The RAX manager mediated all com-
munication between the Remote Agent and the DS1 flight
sofware.

Flight
H/W

MIR

EXEC

PS

Remote Agent Ground
System

RAX
Manager

FSW

Mon-
itors

Planning
Experts

Figure 1: RAX Architecture

PS formulates near-term planning problems based on a
long-range mission profile representing the goals of the mis-
sion, extracts goals for the next scheduling horizon, com-
bines them with a projected spacecraft state provided by
EXEC, and formulates a planning problem. This decompo-
sition into long-range mission planning and shorter-term
detailed planning enables RA to undertake an extended mis-
sion with minimal human intervention.

PS then takes a near-term planning problem and produces a
flexible, concurrent temporal plan for execution by EXEC.
PS constructs plans using domain constraints and heuristics
in its knowledge base. Third-party software modules are
interfaced to provide efficient computation for specialized
problems such as navigational or attitude control which are
beyond the scope of planner domain models.

EXEC executes a plan by decomposing the high-level plan
activities into primitives, sending out commands, and moni-
toring progress based on direct feedback from the command
recipient or on inferences drawn by MIR. If some task can-
not be achieved, EXEC may attempt an alternate method or
may request a simple recovery plan from MIR. If the EXEC
is unable to execute or repair the current plan, it cleanly
aborts the plan and attempts to bring the spacecraft into a
safe state while requesting a new plan from MM.

MIR is responsible for mode identification (MI) and mode
reconfiguration (MR). The MI task involves observing the

EXEC as it issues commands, receiving events from moni-
tors, and using a structural and behavioral model of the
spacecraft to combine the sensor data and infer what state
each component is in. MIR returns this information to
EXEC producing the illusion that EXEC can observe the
status of each component directly. During the mode recon-
figuration task, MIR serves as a recovery expert. Using the
same structural and behavioral models, it takes a set of
EXEC constraints to be established or maintained as input
and recommends a single step recovery action to EXEC.
(This can be done repeatedly to generate a limited class of
longer recovery sequences. For details of the Remote Agent
see [7,8,9,10].)

The Flight Experiment

The flight experiment was conducted between May 17th and
21st 1999. The Remote Agent achieved all its technological
goals and was fully flight validated with some problems
encountered along the way. This timeline summarizes what
occurred:

Oct 24
1998

DS1 Launch

May 17
1999

11:04pdt RAX starts
 First plan is generated (but with a deviation from testing

runs)
 RAX performs nominally through the night
May 18
7:00pdt

RAX team realizes EXEC has ceased to command the
spacecraft

17:00pdt RAX is stopped with 70% of validation objectives
achieved

May
19-20

Problem debugged and software patch developed

 Completely new experimental scenario developed and
tested on flight analog hardware in 10 hours

 Project team accepts the new scenario, rejects the
patch

May 21

7:30pdt The new scenario is activated
 During the experiment, supporting software fails to

confirm an IPS state transition (out of scope for RAX).
Problem proves benign.

 RAX completes scenario achieving 100% of validation
goals

The most significant events were the early deviation from
planner testing runs, the discovery of the software bug, and
the creation and testing of a new scenario in 10 hours (pos-
sible only because the autonomy software did much of the
work). These events are described below. For a detailed
account of the experiment, see [3].

Current Flight Control Software
The Jet Propulsion Laboratory’s (JPL) ground tools are rep-
resentative of the current state of the art. The widely used
Multimission Ground Data System (MGDS) receives and
stores telemetry from the spacecraft. The Data Monitor and
Display Subsystem (DMD) allows ground controllers to
read, analyze, and display specific telemetry and related
channel values in a variety of formats. MGDS provides fa-
cilities for converting units and generating derived channels
(functions of one or more other channels). Key parameters
are then compared against pre-set limits and alarms are gen-
erated if those limits are violated. The data are then avail-
able to a variety of output ports such as tables, plots
(channel vs. channel or channel vs. time), and alarm pages.
The resulting user interface consists of sets of pages densely
filled with color-coded numbers representing the state of the
spacecraft.

The Remote Agent is fundamentally different from previous
flight control software in the degree to which it (a) main-
tains an internal representation of what it is doing and why,
and (b) infers the status of spacecraft components not ob-
servable directly by internal sensors. These differences are
reflected in the ground tools.

3. THE RA GROUND TOOLS
The two major goals of the RA ground tools are:

1. Present a summary of the spacecraft status under-
stood easily by the mission operations team.

2. Present enough information about the inner work-
ings of the RA software for the experiment team to
quickly recognize and debug problems.

To support these goals, telemetry specific to Remote Agent
was downlinked during the test. Given the abstract nature of
the RA decision-making, conventional telemetry describing
the spacecraft state would have given only the coarsest view
of the Remote Agent’s performance. RA could potentially
generate correct commands (visible via conventional te-
lemetry) for the wrong reasons (visible only with RA-
specific telemetry), which would not bode well for the re-
mainder of the test.

The RA-specific telemetry included contained:

1. Planning events (e.g., planning started, finished,
and progress messages)

2. Sequence execution events (e.g., plan p is starting
execution, or plan step x started executing at time
t1)

3. Mode interpretation events (e.g., valve v changed
state from nominal to possibly-stuck-
closed)

4. Messages between RA components and between
RA and other DS1 flight software.

This telemetry was event oriented and largely incremental,
i.e., interpretation of one message depended upon receipt of
earlier messages. This design created some problems we
will detail later. In addition, there were heartbeat (“I’m still
alive”) messages from RA components visible in the normal
DS1 telemetry. The next sections describe specific ground
tools constructed to examine this telemetry.

Telemetry Data Flow

Figure 2 shows how this telemetry flowed from the space-
craft to the RA ground tools. First, downlinked telemetry
and files were received by the Deep Space Network (DSN)
and sent to MGDS. Remote Agent ground software
(mgds2rax and the Decoder) then retrieved RA-specific
telemetry from the MGDS database and published packets
on a software message bus (TCA-IPC) used by all RAX
ground tools. The flexibility of this message bus enabled us
to run duplicate collections of ground tools at JPL and
NASA Ames and to safely add modified versions of our
ground tools at the last minute to support the RAX web site,
further illustrating the plug-and-play paradigm.

Figure 2: RA Tool Data Flow

Packet View

Remote Agent telemetry is event-based.4 PacketView dis-
plays these events in a simple one line per message format
that is easily understandable to all members of the team. As
such, PacketView was the foundation of the RA ground
tools (see Figure 3).

4 This caused problems with dropped and delayed packets as
we describe later.

Figure 3: PacketView (telemetry packet) display

The PacketView interface displayed four types of telemetry
packet: EXEC - executive telemetry, PS - planner/scheduler
telemetry, MIR - mode identification/ recovery telemetry,
and IPCO_RAXO - on-board messages sent between the
three RA components. These were displayed as color-coded
scrolling lines of text. Missing packets, detected by gaps in
the sequential packet numbering, were displayed as a single
line in a unique color. Search capabilities were available
based on message type and content. User selectable dialogs
presented "pretty-printed" versions of the single-line packet
entries. The "time bar" displayed the most recent "space-
craft sent" Greenwich Mean Time (GMT), the most recent
"ground received" GMT time, and a running time since last
packet was received.

ExecView

ExecView visualized the execution status of plans onboard
the spacecraft (see Figure 4). Different kinds of activity
associated with different parts of the spacecraft appeared on
separate timelines. For each kind of activity, specific
planned events were represented as "tokens" appearing
along the timeline. Tokens were color-coded to represent
their execution status, i.e., in-the-future, currently-
executing, completed and completion-overdue.

The Remote Agent used a constraint posting planner that
models the activity to be scheduled as a set of tasks with
temporal constraints among them (see [18]). For instance,
communication with the ground couldn’t occur during an
interval in which the spacecraft was turning to point its
camera at a target. It was the job of the planner to find a
schedule that satisfied the many constraints between activi-
ties. A significant part of understanding the performance of
the planner involved understanding its handling of these
constraints. ExecView provided ways to visualize these
temporal constraints, and the user could see how they
evolved as the plan execution proceeded.

As the plan was being executed by Exec onboard the space-
craft, the start and finish times of the activities would be
expected to change. Through the constraints, these changes
would impact later activities. ExecView would propagate
these changes downstream in the schedule, using the same
propagation techniques used by the Planner.

ExecView was designed initially as a debugging tool for
validating Exec development. As a result it did not have
support for handling missing telemetry packets during
flight. As a result, it produced some erroneous conclusions
during RAX concerning the state of plan execution. To
make ExecView more useful, it will have to handle such
missing data. One approach would be to view the problem
ExecView is solving as a dynamic constraint satisfaction
problem (see [19]) where some terms are unknown during
testing and other terms are unknown during flight. In test-
ing, the Exec’s actions and the current clock time are known
completely, and the unknown is whether the EXEC is oper-
ating correctly (executing tokens at the correct times). In
flight, the reports of actions taken and the knowledge of the
current clock time may be incomplete, but it can assume that
the EXEC is doing its job. If the EXEC reports Task B5 is
finished after a few missing packets, ExecView could safely
assume that Task B5 was previously started, and even that
Task B4 must have finished.

Figure 4: ExecView (plan execution status)

The Ground Planner
Of the three technology modules flown as part of the RA,
the spacecraft team was least comfortable with PS. To allow
the DS1 team to gain confidence in the planner, the RAX
team used a ground twin. The ground planner was identical
to the one onboard and was able to duplicate the onboard
twin by tapping into the real time telemetry available on the
ground. It had access to other flight software resources via
connection to a high-fidelity testbed. This testbed accu-
rately replicated the software onboard DS1 although it did
not replicate the hardware. Of particular importance to the
planner were navigation module and beacon asteroid file

describing targets for optical navigation and the portion of
the attitude control software that predicted the time required
to change spacecraft orientation.

Figure 5: Ground Planner Twin system architecture

With one exception, described below, the ground planner
was a useful tool in predicting the performance of the plan-
ner onboard and was especially useful as a confidence
builder for mission staff unfamiliar with the working of an
autonomous planning agent. Figure 5 gives an overview of
the system architecture of the ground twin.

PS Graph

PS Graph (see Figure 6) displayed search history for each
plan generated by the on-board Planner as a x-y graph rep-
resenting the search depth vs. number of search nodes vis-
ited. The purpose of these plots was to provide a gross
metric indicating whether the planner was proceeding as it
had during testing and to check agreement with the ground
twin.

Figure 6: PS Graph (planner progress) display

During flight, we noticed that the onboard planner’s search
history deviated from both the ground twin and previous
testing. Since the software and file configurations were
expected to be identical between the ground and the space-

craft, this discrepancy was unexpected. We later discovered
the discrepancy to be caused by a difference in the content
of the file containing the onboard navigator’s beacon aster-
oids. This file version difference resulted in a navigation
plan involving different asteroids, attitudes and turn times.
Though designed for just this sort of variation, the planner
onboard was, in fact, asked to solve a problem it had never
been tested on! And it did so successfully. This uninten-
tional demonstration gave the flight team greater confidence
in the new planning technology.

Stanley and MIR

A version of MIR was also run on the ground. The purpose
of this was to infer MIR’s full internal representation of the
spacecraft state from the telemetry which contained a much
smaller subset. Specifically, it contained the set of inde-
pendent variables in MIR’s spacecraft model. The Stanley5
ground tool displayed a hierarchical schematic of the space-
craft's on-board components whose status was driven by the
ground MIR (see Figure 7).

Components could be opened to show more detail or closed.
The states displayed were blue (ok - powered off), green (ok
- powered on), yellow (recoverable failure), purple (de-
graded failure), and red (permanent failure). Since Stanley
assigned colors to all states, nominal as well as off nominal,
it allowed the user to tell at a glance the conditions of the
devices. Stanley did not address the issue of displaying
continuous values, such as a battery state of change. DMD
displayed such values textually, with units.

Figure 7: Stanley (hardware status) display

In addition to the color changes, detected component faults
were reported by popping up an alert box. The alert box
allowed the user to click on an entry, resulting in the sche-

5 The engine underlying MIR is called Livingstone

matic being opened down to the appropriate hierarchical
level to show the local context of the fault. Histories of all
state changes, important or not, were available at any time
by clicking on components.

Predicted Events
Although the Remote Agent is autonomous in principle,
ground operators need to coordinate certain activities with
it. For example, the Deep Space Network stations need to
know when to expect signals from the spacecraft and when
to expect its High Gain Antenna to be pointed away. Also
since ground operators were watching the commands RA
issued closely, it was important to have a prediction of when
the RA planned to take various actions, so that the appropri-
ate subsystem stations at the mission operations center could

be staffed. Like the conventional MGDS system, the RA
ground system produced a predicted events list of “activities
scheduled for execution”. However, the activities for RA
were high-level and structured, the scheduling was done on-
board and was flexible, and the execution was more com-
plex.

In conventional missions, commands are prepared on the
ground, and time specifications provided by the operations
and science teams (e.g. “start this command ten seconds
after the previous command starts”) are reduced to absolute
time values. A Predicted Events File (PEF) is a fully ex-
panded version of the low-level command sequence, along
with calls to on-board routines and the like. This is gener-
ated for use during the final command approval process.

In the case of the RA, a plan is generated on board from the
goals outlined in the mission profile, and so the timing is not

known until the plan is reported via telemetry. Even then,
there is flexibility in the timing since only as an activity is
being executed will specific times for its initiation and ter-
mination be chosen. Until execution, activities are associ-
ated with time windows. For instance, while a traditional
sequence will allow a fixed amount of time for the Xenon
tank to pressure before turning on thrust, the Remote Agent
can give the next command any time within a flexible time
window, as soon as it finds that all preconditions for thrust-
ing are met. The predicted-events printouts used for RA
therefore indicated the earliest and latest possible start
times.

The printouts reported both the low-level commands RA
would issue together with the high-level actions RA was
asked to take. The high-level actions served as a summaries

for and explanations of the low-level commands. RA was
designed to decide on task decomposition in real time, not
to report them in advance, so the breakdown and timing
were exacted from logs of pre-flight tests. In this case, the
low-level advance information was of interest only because
of the experimental nature of the RA, but there may inher-
ently be an issue to be kept in mind at design time: as in
human planning, some details that can be decided on at the
last moment may have an impact on a third party's own
planning and so may need to be settled in advance.

Public Outreach via the Web
The RAX team constructed two additional tools to present
the remote agent's progress to the public. These tools are
interesting because they required an even higher target for
simplicity and understandability than did the flight control-

07:07:58 Rotating the spacecraft, to point MICAS camera at Asteroid 39 Laetitia, and the solar panels
at the sun.

07:21:16 Taking an image of Asteroid 39 Laetitia, as requested by Autonomous Navigation system.
07:44:52 Rotating the spacecraft, to point the ion engine thrust at ra 4.1666, dec -0.3550, x=-0.4867,

y=-0.8014, z=-0.3476, and the solar panels at the sun.
09:00:56 Commanding the ion propulsion system to pressurize the xenon tank.
09:11:12 Commanding the ion drive to start thrusting.
09:11:15 Commanding Attitude Control Subsystem to use ion drive for steering.
12:54:10 Commanding Attitude Control Subsystem to use thrusters for steering.
12:54:13 Commanding the ion drive to stop thrusting.
16:09:11 Rotating the spacecraft, to point High Gain Antenna at Earth, and the solar panels at the sun.
16:11:51 Spontaneous spacecraft state changes just detected:

- Steering with thrusters is degraded but usable.
- Earth standby capability is degraded but usable.
- Sun standby capability is degraded but usable.
- Ability to use X-facing thrusters for Y-axis torque has failed and appears unrecoverable.
- Ability to use Z-facing thrusters for Y-axis torque is degraded but usable.

16:11:51 RAX is looking for a way to recover. The recovery will have to achieve (or maintain) four im-
portant states:

- Make it so steering with thrusters is working okay.
- Make it so ACS is steering with thrusters.
- Make it so MICAS camera is powered on.
- Make it so Low-Power Electronics subsystem is working okay.

16:11:52 In an attempt to recover, RAX has decided to command Attitude Control Subsystem to employ its
ability to use Z-facing thrusters for Y-axis torque.

Figure 8: Sample of summarized telemetry

lers’s tools. The tools were emailed summaries of events
onboard presented in simple English and a Java applet time-
line display patterned after execview

Several recent missions have used pagers and email to de-
liver notifications to the mission operations team. The DS1
ground system, for instance, alerted operators by pager
when a given measurement strayed outside a preset range or
when fault protection telemetry went into an unusual state.
We took this a step further in RAX by producing descrip-
tions of important events in common English. See figure 8
for an example. The summarized descriptions were auto-
matically posted to our web site (rax.arc.nasa.gov) and
emailed in batches to a public mailing list. 2000 subscribers
received this email during RAX. Terse descriptions were
also sent to team members’ alphanumeric pagers via email.

This was done by applying a set of rewrite rules to the RAX
telemetry. These rules filtered the event stream to identify
important events. They then expanded the stylized event
descriptions into English sentences using templates and
translated event parameters using lookup tables. For exam-
ple, a DS1 turn specification includes about a dozen
parameters including an asteroid id number and codes for
the antenna and camera bore sights. These numbers were
looked up in tables to produce human-readable messages.

Critical to achieving event summaries that would convey
what the Remote Agent was doing onboard, without obscur-
ing detail, was Remote Agent’s ability to represent its own
goals. This allowed us some flexibility in tuning the event
filtering to provide an appropriate level of detail. Even
then, we didn’t achieve English summaries as effective as
we wanted because some information about why RA was
doing certain actions was not downlinked during the test but
stored onboard for later transmission. Were we to do this
again, we would include more of this information in teleme-
try.

We also provided an alternative description of Remote
Agent activity (Figure 9) using horizontal timelines pat-
terned after ExecView. This was implemented as a java
applet. The timelines in the top window represented major
kinds of activity (e.g., attitude or camera-related activity).
Along the timelines were boxes indicating particular activi-
ties (e.g., a turn) in effect reproducing the plans generated
onboard on a user’s web browser. At the bottom left were
controls to step through the timelines. At the bottom right
was an event-based summary similar to that provided in
email. This box was slowly added to as new telemetry came
down. The most interesting feature of this applet was its
ability to show what RA planned to do at any point in the
experiment by selecting the event that occurred at that time.
This is interesting because the plan changed several times
due to simulated faults. Thus it provided an historical over-
view of Remote Agent's re-planning activity and recreated
for the general public conditions onboard the spacecraft.

 Figure 9: Timeline Applet

Due to time pressure, the outreach tools were designed to
handle the nominal scenario only (including the simulated
faults). They did not accurately reflect the RAX software
problems that occurred. They did, however, summarize
activity during the new scenario without modification.

These outreach tools caused some debate within the project
team because of their potential to inform the public immedi-
ately of a problem onboard before it was well understood by
the team. It was always assumed the public would get this
information, but the possibility that the tools would magnify
the public's awareness of small problems or problems that
could easily be handled was a legitimate worry. Also, bugs
in these explanation tools that gave a false impression of
activity onboard couldn't be easily corrected if summaries
were sent automatically. In the end, we believe the team
allowed the tools because RAX was an experiment that did
not risk the spacecraft. In the future, we will continue en-
hancing our tools for summarizing and presenting events
onboard spacecraft to the operations team. How this infor-
mation best gets to the public is still open.

4. DISCUSSION

High-level commanding & delegation

Central to Remote Agent is the idea of ground controllers
delegating tasks to a software agent onboard. What distin-
guishes RA from sequencing software is the degree to which
the tasks can be specified in terms of high-level goals, leav-
ing to the agent the details of accomplishing the goals and
managing their interactions.

Delegation to a software agent has several advantages.
First, if reliable, delegation can reduce ground controller
workload significantly. Second, the agent can handle con-
tingencies and off-nominal events quickly, without the de-
lays associated with safing the spacecraft and
communicating with Earth and thereby avoiding regenera-

tion, testing and validation of possibly complex sequences.
In time-critical phases of a mission, for instance Cassini’s
insertion into Saturn orbit, handling contingencies quickly is
not just essential but critical to the success of the mission.

A simple version of such a scenario, but one that occurs
more often in practice, is handling minor deviations in plan
execution such as steps finishing later than expected. This
is possible when the agent "understands" the relationships
between different steps in the plan. For instance, a delay is
normally not a problem, except when it in turn delays a later
step with absolute time constraints, say for instance, a com-
munication window with the DSN. Deciding which situa-
tion the agent is in and compensating if necessary requires
reasoning about these relationships. Note that timing varia-
tions can be helpful too, such as when an activity finishes
earlier than planned for. This may leave extra time for other
activities, such as science observations that may otherwise
not be optimized.

High-level commanding has a profound impact on ground
tools. Clearly they must be able to display goals, plans and
plan execution status. And they must indicate deviations
from the plan and any corrective actions the agent takes.
High-level commanding also makes possible summaries like
those generated by the telemetry-to-email and html tools.
Central to doing this in a general way are the relationships
between the high-level goals and low level commands used
by the agent to achieve them. These relationships allow a
ground tool to cluster the low level commands and summa-
rize them as a single event. Of course, the details must be
easily available. There is a fundamental tension between
human operators, with their experience, intuition and so-
phisticated pattern recognition abilities, focussing on raw
sensor data from a spacecraft and the associated high work-
load versus the pressure to handle more missions with fewer
resources. We believe summarization of this sort is an ef-
fective way for ground operators to avoid information over-
load in the future.

Yet another aspect of such a paradigm has to deal with mis-
sions of extended duration. As humans have gone from ex-
ploring celestial bodies closer to earth, to those further
away, the time it would take to get there is going to in-
crease. At the same time, budget constraints have forced
space agencies to achieve ambitious goals within smaller
operations teams. One prominent example of such diverse
goals in a mission is the COmet Nucleus TOUR (CON-
TOUR) mission to be run out of the Johns Hopkins Applied
Physics Laboratory. The basic goal is to visit 3 comets in
different stages of evolution over a 6 year mission (see Fig-
ure 10). With the exception of the time during encounters,
CONTOUR will be in a spin stabilized hibernation mode. .
During the non-encounter periods of the mission the space-
craft systems will be put into a hibernation mode and the
operations staff will be very low or non-existent. At encoun-
ter – 60 days the operations staff will be reactivated, contact

will be made with the spacecraft, and a checkout will begin.
Because the mission will be intermittently staffed, it is
highly likely that spacecraft knowledge by the operations
staff would have degraded and have to be regained when the
spacecraft awakes from its hibernation. In addition it is dif-
ficult to retain detailed knowledge of previous states and
behavior of the spacecraft and its subsystems. Either the
necessary personnel are no longer available or they have
moved on to other projects and are no longer experts for the
current mission.

Under such a situation, ground tools which can rapidly pro-
vide a quick overview of the spacecraft using notations
based on high level commanding would be most valuable.
Missions staff unfamiliar with the modalities of operating a
different mission or craft can quickly come up to speed and
achieve situational awareness in a matter of days and not
months. They can be provided with high level commanding
goals enabled on the spacecraft during its lifetime and un-
derstand the nature and cause of faults encountered onboard.
Using conventional means, the user would be forced to
delve into large datasets to fully understand the scope and
history of the past performance of the spacecraft not to men-
tion be unprepared to deal with any contingencies within the
current timeframe.

Figure 9: The CONTOUR Mission

Science Operations

High-level commanding has benefits outside of the opera-
tions community. Applied to a science mission, the logical
extension of the idea is for the science team to interact with
the onboard software agent directly through high-level goals
and summarizations of the resulting activity (plus the result-
ing science data). The operations team would focus on in-
teraction with shared resources like the DSN and on
problems when they arose. We did not explore this with the
remote agent experiment, which was primarily a technology
demonstration. Our team did not interact directly with any-
one who sought space science instrument data.

On Earth, however, our research group has done a series of
autonomous rover field tests with the goal of making the
rover increasingly an extension of the scientists' eyes and
hands. These tests have used high-level commanding and
delegation to a software agent as a way to enable the scien-
tists to interact directly with the rover in terms they care
about and avoiding technical details that can be abstracted
and handled automatically. With the expected increase in
the number of NASA and commercial missions, we expect
an increased emphasis on Science Operations. Mission Op-
erations, we believe, will become more opaque to the actual

end users. Networking will also enable PI’s to control mis-
sions from their home institutions in distributed geographic
locations rather than gather for extended periods at a mis-
sion control center.

Mixed-Initiative Control

New generations of autonomy technology like Remote
Agent will provide the ability to handle more complex mis-
sions more robustly. But will operations and science teams
accept the reduced level of ground control inherent in higher
levels of onboard autonomy? Are there risks to increased
autonomy?

Yes there are: autonomy is a tradeoff. Where are the checks
and balances for decisions made onboard? What about re-
duced situational awareness? In a time-critical situation,
will ground operators have difficulty getting "up-to-speed"
on the state of a spacecraft that has been monitored and ad-
justed by an onboard agent? During science missions, in-
vestigators are rightly concerned about any filtering or
interpretation of instrument observations onboard or any
automated focus-of-attention mechanisms. Note that all of
these issues also arise in the relationship between astronauts
and ground controllers.

Although RAX was intended as a demonstration of full
autonomy, we recognize these legitimate concerns and are
working to provide variable levels of autonomy. Remote
Agent as it was tested could not do this. It was all-or-
nothing: either it was responsible for managing tasks within
its prescribed area of activity or not. Our research group at
NASA has several projects underway to examine various
ways to allocate responsibility. The key here is the notion of
“mixed-initiative” control. This means the ability to seam-
lessly handle control actions initiated both on the ground
and within the onboard agent. The key problems are mak-
ing sure that activities commanded by the agent and the
ground do not conflict with each other or incrementally re-
planning any agent-initiated activity that does conflict; de-
signing user interfaces that convey to the ground operators
the effects ground commanded actions will have on the cur-
rently planned onboard activities; and ground tools to assist
operators in constructing their commands quickly and accu-
rately.

While autonomy should enable more complex and robust
missions, it will also reduce controller workload allowing
controllers to handle more spacecraft. This will be critical
to achieve a new kind of mission: the spacecraft constella-
tion.

Constellations

Spacecraft constellations have recently become a hot topic
driven by many factors including the distributed interfer-
ometry techniques planned for the terrestrial planet finder
and NASA's cheaper, faster, better design philosophy. Sen-

sorWeb is one long-range concept proposed by the Goddard
Space Flight Center in which hundreds of heterogeneous
satellites cooperatively achieve our Earth observing goals.
Redundancy and the ability to incrementally upgrade the
constellation with new instruments without significantly
changing the control problem are two advantages of this
concept. Near-term efforts include The New Millennium
ST3 with its plan to fly two similar spacecraft within a tight
formation to image identical portions of the sky. JHU/APL
is also expecting to fly the STEREO mission to study solar
activity and provide data in real-time to understand global
climactic changes on earth due to this phenomena.

Constellations are here to stay. One can expect to see con-
stellations of cheap deep space probes being sent out to dis-
cover life in other solar systems. These could be
homogenous or heterogeneous and controlled using a classi-
cal master/slave control law or in a more distributed man-
ner. In any case, the complexity of performing mission
operations increases dramatically with additional platforms
in space however simple they might be. High level com-
manding and transparent control will not only be desired but
be necessary for such mission design. In the event of a col-
lective anomaly (massive solar flares for instance), opera-
tors will need to rapidly assess the state of the constellation
fleet and access damage and react to save multiple space-
craft that might have reacted in different ways. Their tools
will not only have to provide a succinct high-level view of
the situation but provide details of individual spacecraft and
suggest potential recovery actions. We believe technologies
such as the Remote Agent, which works at higher abstrac-
tion levels, has an inherent advantage over the suite of tools
currently available. Moreover, portions of these constella-
tions may be deployed and owned by different organizations
and countries. The desire to coordinate commanding across
organizations will place an even higher premium on tools
for maintaining situational awareness across the whole con-
stellation.

The same can be said of doing science. With greater num-
bers and diversity of platforms a principal investigator
would need to manipulate simultaneously for doing say in-
terferometry, it is inconceivable that s/he would be in a posi-
tion to command and control such multitudes of vehicles
without either a vast array of operations staff or tools which
will abstract telemetry data and provide a clear picture of
the state of the system.

Verification and Validation
Section 2.2 of this paper gives a brief synopsis of the Re-
mote Agent in flight and mentions the discovery of a bug
leading to the stoppage of the experiment when 70% of the
validation objectives had been accomplished.

It is instructive to look closely at the way the bug was diag-
nosed and conclusively discovered. A missing critical sec-

tion in a part of the Executive’s code was the reason one
Exec thread was waiting for the other indeterminately. The
bug itself was noticed after it was discovered that the RA
had stopped executing, but that the spacecraft state itself
was deemed healthy. In order to get conclusive evidence as
to the nature of the bug, members of the RA team uploaded
sequences that evaluated variables in the running environ-
ment of the Exec. The returned values indicated the state of
each of the concurrent threads the Exec was supposed to be
running which helped in rapid convergence to the portion of
the Exec code where the missing critical section was found.
A quick test with various timing parameters to simulate on-
board conditions revealed that this was indeed the case.
Simultaneously, while the debugging was being undertaken
at JPL, members of the Automated Software Engineering
group had been challenged to find the same bug in the RA
software without access to any run time data. Indeed, Veri-
fication and Validation (V&V) techniques used by the group
independently found the bug on a simplified model of the
Executive’s plan runner module which does thread man-
agement. It turns out a similar bug was found by them 2
years earlier (see [16]) in a different section of the code; the
flight bug was a cut and paste error which was not corrected
when the first error was found and fixed!

The events described above highlight the importance of
V&V techniques in debugging complex software. While
they are not a panacea in themselves due to their inability to
completely explore all possible paths of flow of complex
systems, techniques are available to model restricted subsets
of the execution traces of the software itself. Such meta-
models allow limited (albeit useful) evaluation such as the
above, to take place. As a result of this exercise, therefore,
more research is currently being undertaken at NASA Ames
to fully understand the scope of domain models of space-
craft and to automatically model them within model-
checking tools such as [17]. Increased emphasis on auto-
mated scenario based testing [8] is also critical to under-
stand how software for complex autonomous systems is
likely to behave in a situated environment and to provide
some measure of guarantee and reliability in mission critical
environments.

Spacecraft as Appliances

Increasingly in the Internet world, the concept of appliances
are becoming a reality [4]. For instance internet accessible
vending machines that check the status of their contents
have been available for years [1]. Web based control inter-
faces to devices like robots and cameras have also become
ubiquitous. Microsoft, the U.S. Geological Survey and oth-
ers have come together to provide satellite imagery from the
SPIN-2 spacecraft in 2-meter resolution via the web as part
of the TerraServer project. Some of the applications touted
from this venture are in discovering and fighting forest fires,
assessing environmental damage, urban planning, planning
for construction sites and just for “plain fun” [5].

Given this trend, it’s very possible that people would like to
have space imagery for prospective vacations, for naviga-
tion in unfamiliar surroundings and simply as a means to
understand the topography of a particular area. We predict
there will come a time when spacecraft themselves will also
become appliances which will be accessed by ordinary citi-
zens for purposes of science, entertainment or perhaps even
as proxy for traveling out in interstellar space. The space-
craft in effect becomes a “server” for an individual's needs,
whether it is for science or entertainment.

While simple interfaces will suffice for requesting and ob-
taining space based images like those by the TerraServer,
for individuals to be able to remotely control and maintain
spacecraft as entities in space will require more than the
simple interfaces available. Light time communication de-
lays will increase the importance of agents acting as proxies
for groups of users on the ground, representing their inter-
ests and goals as conditions change in space. Symbolic rep-
resentations of spacecraft data will be essential so that data
is easily understood, digested and manipulated by lay indi-
viduals. Such an individual will require abstractions of sub-
systems now commanded to the minutest detail, like ACS,
OpNAV and engines. They will need abstractions to ma-
nipulate the orientation of the spacecraft for optimal imag-
ing patterns without bringing harm to the craft.
Abstractions of telemetry data received by the individual
will provide high-level information to the user at a glance,
and will enable users to dig down into details when neces-
sary.

5. CONCLUSION

Advanced autonomy is providing new opportunities for
flight controllers and science teams to manage unmanned
spacecraft more efficiently. Autonomy allows delegation of
low-level decision-making to software, more rapid genera-
tion of verified command sequences, and is a critical enabler
for certain robotic mission scenarios that cannot be con-
trolled effectively from the ground. However, improving
this category of software's transparency, accountability and
capability for mixed-initiative control is critical to its accep-
tance by the flight control community. We have explored
these issues via the ground tools for the Remote Agent ex-
periment onboard the Deep Space 1 spacecraft in May of
1999.

ACKNOWLEDGEMENTS
This paper describes work performed at the NASA Ames
Research Center and at Cal Tech’s Jet Propulsion Labora-
tory under contract from NASA. The Remote Agent and its
ground tools were the work of a large team of researchers
and developers from both institutions.

REFERENCES
[1] "bsy’s List of Internet Accessible Coke Machines", at

http://www.cs.cmu.edu/afs/cs.cmu.edu/usr/bsy/www/c
oke.html.

[2] Bernard D., et al., "Design of the remote agent ex-
periment for spacecraft autonomy." In Proceedings of
the IEEE Aerospace Conference, 1998.

[3] Bernard, D. et al, Spacecraft Autonomy Flight Experi-
ence: The DS1 Remote Agent Experiment (AIAA?)

[4] Eustice, K., et.al, "A universal information appliance",
IBM Systems Journal, Vol. 38, No. 4, 1999

[5] Microsoft TerraServer,
http://www.terraserver.microsoft.com.

[6] Muscettola N., "HSTS: Integrating planning and
scheduling." In Mark Fox and Monte Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[7] Muscettola N., P. Nayak., B. Pell, and B. Williams,
"Remote Agent: To Boldly Go Where No AI System
Has Gone Before," Artificial Intelligence 103(1-2):5-
48, August 1998

[8] Nayak P. et al, "Validating the DS1 Remote Agent
Experiment," Proceedings of the 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS-99)

[9] Nicola Muscettola, P. Pandurang Nayak, Brian C. Wil-
liams, and Barney Pell, "Remote Agent: To boldly go
where no AI system has gone before." Artificial
Intelligence, 103:5-47, 1998.

[11] Pell B, et al, "An Autonomous Spacecraft Agent Pro-
totype," Autonomous Robotics, 5(1), March 1998.

[12] Pell B., et al, "Robust periodic planning and execution
for autonomous spacecraft." In Proceedings of IJCAI-
97, 1997.

[13] Remote Agent web page http:://rax.arc.nasa.gov

[14] Smith B., et al, "Validation and verification of the re-
mote agent for spacecraft autonomy." In Proceedings
of the 1999 IEEE Aerospace Conference, 1999.

[15] Williams, B. and P. Nayak, "A model-based approach
to reactive self-configuring systems." In Proceedings
of AAAI-96, pages 971-978, 1996.

[16] Havelund, K, M.Lowry and J. Penix "Analysis of a
Spacecraft Controller using SPIN", In Proc. 4th Inter-
national SPIN Workshop, Paris, France, Nov 1998.

[17] Bengtsson,J. et.al, "UPPAL - a Tool suite for Auto-
matic Verification of Real Time Systems", In Proc. 4th
DIMACS Workshop on Verification and Control of
Hybrid Systems"", New Brunswick, New Jersey, Oct
1995.

[18] Jonsson.A, P.Morris, N.Muscettola, K.Rajan and B.
Smith, "Planning in Interplanetary Space: Theory and
Practice", submitted to the AI and Planning Systems
conference, Brekenridge, CO April 2000.

[19] Dechter, R & A. Dechter, "Belief Maintenance in Dy-
namic Constraint Networks", in Proc. 7th National
Conference on Artificial Intelligence, AAAI-88, Palo
Alto, CA.

